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Abstract

Continuum theories with additional higher-order inertia terms have been suggested in the literature in order to be able to

describe dispersive wave propagation and in order to include microstructural information in the macroscopic model. In

this short note, we investigate two numerical discretisation aspects of such a model. Firstly, the critical time step is derived

which is relevant for conditionally stable time integrators. Secondly, a discrete dispersion analysis is carried out by which

the accuracy of the discretised model can be assessed a priori. Recommendations for the finite element size and the time

step size can thus be made.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In this short note, we discuss a few numerical discretisation aspects of continuum elasticity theories that are
equipped with additional inertia terms. Denoting the space and time derivatives by a dash and a dot,
respectively, the 1D-version of such a model can be written as

r €u� ‘2 r €u00 ¼ E u00, (1)

where r and E are the mass density and the Young’s modulus, u is the displacement and the additional inertia
term is accompanied by the material length scale parameter ‘ that is a representation of the underlying
microstructure of the material. The motivation for using Eq. (1) is often a more accurate simulation of
dispersive wave propagation. Whereas classical elasticity theories without additional inertia are non-
dispersive, experimental evidence reveals that the angular frequency of the higher wave numbers is normally
lower than predicted by classical elasticity.

Although the above discussion may suggest otherwise, a solid microstructural background for the length
scale parameter ‘ can be obtained. Especially the following procedure has been explored by many researchers,
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2007.12.034

ing author.

ess: h.askes@sheffield.ac.uk (H. Askes).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2007.12.034
mailto:h.askes@sheffield.ac.uk


ARTICLE IN PRESS
H. Askes et al. / Journal of Sound and Vibration 314 (2008) 650–656 651
see for instance Refs. [1–3]:
�
 starting from a discrete or heterogeneous description of the material, continualisation or homogenisation
principles are applied by which equivalent homogeneous continuum theories can be derived. If accuracy is
desired beyond the leading order terms, normally a higher-order stiffness term is obtained, e.g. in the spirit
of Eq. (1)

r €u ¼ E u00 þ ‘2 E u0000. (2)
�
 The higher-order stiffness term in Eq. (2) is unfortunately destabilising and in numerical simulations it
would require additional continuity of the interpolants. To overcome these drawbacks, the higher-order
stiffness term can be recast as a higher-order inertia term by using Padé approximations or other
mathematical manipulations. The model of Eq. (1) thus results.

Other motivations for higher-order inertia are possible as well [4–9]. In this contribution we do not investigate
the physical backgrounds further of such models, but instead focus on the aspects of discretisation in space
and in time. In Section 2, we investigate how the critical time step in the Newmark time integration algorithm
is affected by the additional inertia. Furthermore, based on a dispersion analysis of the space–time discretised
medium we provide guidelines in Section 3 on how to choose time step and finite element size. We will employ
linear finite elements and the Newmark scheme throughout, while uniform element lengths h and uniform time
step sizes Dt will also be assumed. This will then enable us to provide recommendations on selection of the
element size and the time step.
2. Stability aspects: critical time step

After spatial discretisation, the element equations according to Eq. (1) can be written as [10]

½MþMm�€dþ Kd ¼ f, (3)

where the various element matrices are given as

M ¼ rh
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h
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�1 1

� �
. (4)

Furthermore, d is a vector with the nodal displacements and f is a vector that contains the contributions of
boundary tractions and body forces. For the time integration explicit algorithms (such as the central difference
scheme) or implicit algorithms (such as the Newmark scheme) can be used. All explicit algorithms and some
implicit algorithms are only conditionally stable, that is, the applied time step must be selected smaller than a
so-called critical time step in order for the simulations to remain numerically stable.

In order to derive the critical time step for the Newmark algorithm, we employ the strategy set out by
Hughes [11], that is,

Dtcrit ¼
Ocrit

omax
, (5)

where Dtcrit is the sought critical time step, Ocrit ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=2� b

p
is the critical sampling frequency of the

Newmark scheme and omax is the maximum angular frequency that can be captured by the applied spatial
discretisation. The Newmark parameters g and b set the accuracy, stability and numerical damping of the time
integration scheme. The maximum angular frequency omax is obtained by solving the homogeneous equivalent
of Eq. (3), which results in the following eigenvalue problem:

det½�o2ðMþMmÞ þ K� ¼ 0. (6)
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Using the definitions given in Eq. (4), the eigenvalue problem can be solved in terms of o as

o ¼
ce

ffiffiffiffiffi
12
p

h

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12ð‘=hÞ2

q (7)

in which ce ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
is the elastic wave velocity in 1D systems. Thus,

Dtcrit ¼
h

ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ðg=2� bÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 12ð‘=hÞ2

q
, (8)

which is expressed as the critical time step for classical elasticity (retrieved through ‘ ¼ 0) times a
magnification factor due to the higher-order inertia.

This is illustrated for the Fox–Goodwin scheme which is retrieved from the Newmark scheme by taking
g ¼ 1

2
and b ¼ 1

12
. Wave propagation through a bar of length 100m is studied numerically with the material

parameters ce ¼ 1m=s and ‘ ¼ 1m. The bar is loaded with a unit pulse at the left end. Taking the element size
h ¼ 1m, the critical time step is computed from Eq. (8) as Dtcrit ¼ 2:5495 s. The simulations are run till time
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Fig. 1. Role of critical time step Dtcrit ¼ 2:5495 s in the Fox–Goodwin scheme—displacement profiles along bar for applied time step

Dt ¼ 2 s (a), Dt ¼ 2:54 s (b), Dt ¼ 2:55 s (c) and Dt ¼ 2:57 s (d).
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t ¼ 74 s with different time steps, both below and above the critical time step. The final profiles of the
displacements along the bar are shown in Fig. 1. Taking a time step Dt ¼ 2 s well below Dtcrit results in a
displacement profile without artificial amplification of oscillations. With Dt ¼ 2:54 s the time step is just below
Dtcrit; while some amplification of the higher frequencies takes place, their amplitude nevertheless remains
bounded. If the time step Dt ¼ 2:55 s is just above Dtcrit, the higher frequencies are amplified and start to
dominate the rest of the response. Finally, taking Dt ¼ 2:57 s the high-frequency oscillations grow with every
time step and become unbounded. Note that for this model with higher-order inertia the lower frequencies are
not affected by the additional mass term, but the higher frequencies are slowed down. Thus, it is exactly these
higher frequencies which are destabilised first if the selected time step results in a too large enforced
propagation of the wave.
3. Accuracy aspects: discrete dispersion relation

The dispersion relation after discretisation in space and time will be derived next. After assembly of the
element equations of expression (3), the nth equation reads

1

6
rhðan�1 þ 4an þ anþ1Þ þ

r‘2

h
ð�an�1 þ 2an � anþ1Þ þ

E

h
ð�dn�1 þ 2dn � dnþ1Þ ¼ 0, (9)

where an is the time-discretised acceleration of node n. Eq. (9) contains terms with accelerations and with
displacements, the latter of which are of the simpler format. Therefore, it is most convenient to eliminate the
displacements from the formulation. To this end, three consecutive time instants with constant time step Dt

will be considered. The standard Newmark equations relate time step tjþ1 to time step tj, that is [11]

djþ1
¼ dj
þ Dtvj þ ð1

2
� bÞDt2aj þ bDt2ajþ1. (10)

Furthermore, the Newmark equations relating time step tj�1 to time step tj can be used to derive that

dj�1
¼ dj
� Dtvj þ ð1

2
� gþ bÞDt2aj�1 þ ðg� bÞDt2aj. (11)

For an objective assessment of the dispersive properties of the continuum model, it is appropriate to eliminate
numerical damping from the description. Hence, the Newmark parameter g should be taken as g ¼ 1

2
. It then

follows from Eqs. (10) and (11) that

dj�1
� 2dj

þ djþ1
¼ bDt2aj�1 þ ð1� 2bÞDt2aj þ bDt2ajþ1. (12)

Next, Eq. (9) is evaluated at time tjþ1 (multiplied with �1), at time tj (multiplied with 2) and at time tj�1

(multiplied with �1). Adding these three expressions and introducing the dimensionless element size h=‘ and
the dimensionless time step ceDt=‘ gives
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n�1 þ 2aj

n � a
j
nþ1Þ ¼ 0, (13)

where Eq. (12) has been used to eliminate the displacements d. For the discretised system a solution of the
form aj

n ¼ A expðiðkxn � otjÞÞ is used. With uniform step sizes h and Dt in space and time it holds that xn ¼ nh

and tj ¼ jDt, by which aj
n ¼ A expðiðknh� ojDtÞÞ. Moreover, a

j�1
n�1 ¼ aj

n expð�ikhÞ expð�ioDtÞ. Eq. (13) can
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Fig. 2. Angular frequency versus wavenumber—Fox–Goodwin scheme with b ¼ 1
12

(a) and average acceleration scheme with b ¼ 1
4
(b).
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Fig. 3. 3D plots and contour plots of wavenumbers with up to 5% error versus dimensionless element size and dimensionless time step—

Fox–Goodwin scheme (a/c) and average acceleration scheme (b/d); the critical time step according to Eq. (8) is indicated with a dashed line.
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Fig. 4. Wave profiles for Fox–Goodwin scheme (a) and average acceleration scheme (b).
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then be rewritten as
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, (14)

which can be used to resolve the angular frequency o as a function of the wavenumber k.
In Fig. 2 we have evaluated the dimensionless angular frequency o‘=ce against the dimensionless

wavenumber k‘ as computed from Eq. (14) for two variants of the Newmark scheme, namely the conditionally
stable Fox–Goodwin scheme ðb ¼ 1

12
Þ and the unconditionally stable average acceleration scheme ðb ¼ 1

4
Þ.

Furthermore, ceDt=‘ ¼ 1 and three different values for h=‘ have been taken. The analytical solution for the
angular frequency has also been plotted, by which the influence and the accuracy of the numerical
discretisation can be assessed a priori. As a next step, for a range of element sizes and for a range of time steps
we have computed the minimum wavenumber for which the angular frequency deviates more than 5% from
the analytical solution. The results are shown in Fig. 3, both in a three-dimensional representation and in a
more quantitative contour plot (note that the axes ranges are not the same for each plot). These plots can
facilitate the choice of the numerical discretisation parameters. Firstly, however, the analyst must select the
range of wavenumbers that need to be simulated accurately. For the Fox–Goodwin scheme it follows that a
dimensionless time step of magnitude 1.5–2.0 is adequate for a large range of dimensionless element sizes. For
the average acceleration scheme, taking ceDt=‘ � 1

2
h=‘ provides efficient discretisations, by which it follows

that the optimal time step Dt � 1
2

h=ce for a wide range of values for the microstructural length ‘.
To illustrate these findings, the example of Section 2 is revisited. All parameters are the same as before

unless mentioned otherwise. The wave profile at time t ¼ 60 s is investigated, and a reference solution is
computed using 1000 finite elements over the bar length and a time step size Dt ¼ 0:1 s. We have used values of
the dimensionless element size h=‘ 2 ½1; 2; 4� and we have used the two recommendations to link time step to
element size for the two variants of the general Newmark scheme. The resulting wave profiles are shown in
Fig. 4. It can be seen that both variants of the Newmark scheme show a good convergence upon mesh
refinement towards the reference solution. Taking the dimensionless element size h=‘ ¼ 1 seems to be an
appropriate choice for describing the wave front of pulse loads, indicating that dimensionless wavenumbers up
to k‘ � 4 are relevant. If coarser discretisations are necessary, the Fox–Goodwin scheme offers good accuracy
for relatively large time steps combined with small elements, whereas the average acceleration scheme offers
good accuracy for moderately large elements combined with proportionally scaled time steps.
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4. Conclusions

In this short note, we have studied two discretisation aspects of a continuum theory enriched with higher-
order inertia. The higher-order inertia term is a representation of the underlying microstructure and it is
accompanied by a coefficient in terms of an internal length scale. The stability limit in terms of a critical time
step has been derived for the relevant variants of the Newmark scheme; this has also been illustrated
numerically for the conditionally stable Fox–Goodwin scheme. It was found that the critical time step
increases due to the presence of the higher-order inertia. Furthermore, if the time step is taken too large (that
is, larger than the critical time step), destabilising effects are first observed for the higher frequencies.

Next, recommendations on the finite element size and the time step have been derived using a discrete
dispersion analysis. After determining a range of wavenumbers that must be described accurately, first a
suitable element size and then a suitable time step can be selected. We found that taking the element size more
or less equal to the microstructural length scale parameter gives a good accuracy for a wide range of
wavenumbers. Taking smaller element sizes is of course possibly but would then raise the question whether it
may be more efficient to model the microstructure explicitly rather than via higher-order inertia.
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